Hyperspectral Spectroscopy
researchundergraduwI worked with Professor Scott Sanders and his group in the ERC throughout my undergrad. Our research looked to create sensors that quickly measure combustion systems. These tools allow engine designers to verify engine performance and critique their design metrics. These methods can also be applied to other dynamic systems; eg. rocket engines. Here's an overview:
Creation of a Fiber Optic Thermometer for Widespread Commercial Use in Internal Combustion Engines
Our research engines have windows in the cylinder walls to allow direct observation of combustion but many other engines do not have this convenience. LaVision, GmbH. has developed an optical spark plug to provide optical access to an engine while retaining normal spark plug function. With LaVision, we've developed a hyperspectral sensor to measure engine combustion in any spark-ignited engine (truck, car, jeep, lawnmower, etc.).
High Speed Grating Spectrometer
Combustion can be a dirty process and as the engine runs soot can accumulate in the optical path. There are a few ways to overcome this, this design simply threw power at it (up to 0.5 W broadband). The sensor generated broadband light (1333-1373nm) centered on the 'R' H2O absorption branch and sent it through a sample. The concentration, temperature, and pressure of water in the sample caused some wavelengths to be absorbed, altering the broadband signal. This alteration is recorded by a 14kHz infrared linescan camera attached to a grating spectrometer. Comparing the altered signal to simulated water absorption measurments allows the concentration, temperature, and pressure of the water in the sample to be determined.