

Adam Koch, Ben Conrad, Kevin Hart, Tim Feyereisen, and Tyler Tallman Dr. Frederick Elder

- Science of solar system, universe, and our place therein
- Preparation for deeper exploration: Mars
- Enable human lunar settlement

--Lunar Exploration Analysis Group

EVITATE How to best explore the Moon?

Apollo Style

- + Access entire globe
- No reuse of launched mass

Outpost

- + Reuse every launched kg
- Exploration limited to walkback range (~15 km)

Courtesy Culbert, 2008

Courtesy Cooke, 2007

- Show concept feasibility
 - Orbital calculations
 - Mass estimates
- Design within codes and standards
 - Part and assembly drawings

- Identify major systems:
 - Propulsion, structure, habitat, life support
- Research:
 - Combine heritage & new ideas
 - Codes and Standards
- Iterative design:
 - Frequent test integrations of subsystems
 - Compliance with codes and standards
 - Verification through analysis
- High-level systems integration

- Minimize mass
- Simple operation
- System redundancy
- Long service life
- Repairability
- Integrate with lunar architecture

- Regolith
 - Corrosive
 - Health hazard
 - Sticks to everything
- Thermal extremes
- Energetic radiation
- Micrometeoroids and orbital debris

Lunar regolith Courtesy Canadian Lunar Research Network

Propulsion

- Tanks
- RCS thruster
- Engine Structure

Habitat

• Life Support

LEVITATE's trajectory from the lunar surface to orbit

 Fuel efficient trajectory developed for Apollo

- Pole-to-pole transfer time:
 64 minutes
- Orbital altitude of 15.24 km

EVITATE Propulsion Subsystems

- Engine requirements:
 - In-situ propellants
 - Throttling capability
 - Heritage

- We chose the P&W CECE
 - Thrust: 66.7 kN
 - Fuel: LOX/LH2
 - 5.5:1 mixture ratio
 - Throttle range: 9%-102%

Pratt and Whitney Common Extensible Cryogenic Engine (CECE)

1000 lbf bipropellant thrusters - Thrust: 4.45 kN - Fuel: LOX/LH2 (3.5:1 mixture ratio)

We chose the Northrop Grumman

 Provide redundant propulsion for emergency landing

Bipropellant thruster

NORTHROP GRUMMA

RCS requirements:

- Powerful for pitch maneuver
- Same fuel as CECE

EVITATE Efficient Reaction Control System

LOX tank LH2 tank

- 1.5 on the ultimate stress
- - 1.25 on the yield stress

- **Materials**
 - LH2: Titanium, grade 5

Fuel tanks requirements:

Store cryogenic fuel

launch loads

CEVITATE Optimal Fuel Tank Construction

- LOX: Inconel 718

- Insulation Concept
 - BX-265 foam: 1"
 - Multi-layer insulation: 1.8" (45 layers)

Design derived from Martin Marietta Astronautics

- PMD retains fuel at drain ports
- Uses surface tension
- Flight-proven technique

EVITATE Major Structural Elements

EVITATE Superior Aluminum Alloy

- Main structural material: Aluminum Weldalite 049-T8
 - Better than traditional alloys (7075-T6)
 - 25% increase in yield strength
 - 3% decrease in mass
 - Easily forged, extruded, machined
- Bolts and pins made of stainless steel
 - Prevents joint fusing
 - High strength
 - Corrosion resistant

Exploded view of pinned connection showing pin, joint and bearing.

RCS housing assembly

FEA on part no. 23100 shows SF of 1.93

Analysis of critical tubular beam in compression; buckling and yield

Lowest I-beam factor of safety 2.24

1.68 m

- Lunar Temperatures (-330F to 250F)
- Massive Structure (<25,000 kg)

- Working Fluid: Silicone-oil
- Bore Diameter: 10 mm
- Stroke: 80 mm
- Weight Equivalent: 40-250 kN

Cross section of shock absorber assembly, covered by NEXTEL sleeve

There are twelve total cargo missi EARSTRACK module

- Pressure vessel
 - Wall and roof design
 - Design verification
- Protects from:
 - Thermal transfers
 - Energetic radiation
 - Regolith entrance
 - Micrometeoroid impacts

Habitat

 2.8 mm thick Aluminum Weldalite panels

Habitat exterior

• Hybrid butt/lap joints prevent atmosphere loss

Wall panel section view showing I-beams and adjacent pressure panels

EVITATE Structure Withstands Pressure

- Maximum 14.7 psi internal pressure
- AIAA S-110-2005 requires a 1.4 factor of safety

• SF 1.67

Finite element analysis of representative wall panel.

- 15 layers insulation blankets
- Double-aluminized polyimide
- Embossed pattern separates layers
- Heat loss limited to ±50 W

Multi-layer insulation

EVITATE Energetic Radiation Protection

NASA Man-Systems Integration Standard 5.7.2.2.1-1
 – 50 rem/yr limit

 Shielding provided by Aluminum and Borated HDPE

 Validated with HZETRN transport code

- Suitport airlock keeps suit outside
- Egress/ingress through hatch in back

Prototype suitport testing, courtesy Gernhardt, 2008

- No traditional airlock, minimizes space
- One suitport for each astronaut
- Keeps regolith outside

- Large temperature swings require PTFE gasket
- 1.8 mm thick

35

Seal created by five 20 kN toggle clamps

Inner Seal Minimizes Atmosphere Loss

- 1 mm thick Silicone gasket
- Large sealing area
- Compressed 25%

Silicone gasket

- 17 km/s average impact velocity
- Based on ISS shielding configuration

Micrometeoroid shield that surrounds habitat

- Fourteen Day Mission
- Simulated Earth Environment

Codes and Standards - NASA

Parameter	Units	Operational	90-day degraded (1)	28-day emergency
CO ₂ partial press Temperature (7) Dew point (2) Ventilation O2 partial pressure (3) Total pressure Dilute gas Trace contaminants (6) Micro-organisms	N/m ² deg. K deg. K m/sec kP2 kP2 kP2 mg/m ³ CFU/m ³ (4)	400 max 291.5-299.9 277.6-288.7 .076203 19.5-23.1 100-101.4 No TBD 500 (5)	1013 max 288.8-302.6 273.9-294.3 .051508 16.5-23.8 100 -101.4 N2 TBD 750 (5)	1600 max 288.8-305.4 273.9-294.3 .050-1.016 15.9-23.8 100-101.4 Ng TBD 1000 (5)
Particulates > 0.5 micron	counts/m ³	3,530,000 max	TBD	TBD

Codes and Standards - SMAC

• Spacecraft Maximum Allowable Concentrations (SMAC)

Compound	Equipment Rate (mg/kg-day)	Metabolic Rate (mg/man- day)	Total (mg/day)	30-Day SMAC (mg/m^3)	SMAC PPM
Ethanol	7.85E-03	4	47.3	2000	1062
methanol	1.27E-03	1.5	9.4	90	70
2-propanol	3.99E-03	0	20.0	150	60
n-butanol	4.71E-03	1.33	26.2	80	Varies
toluene	1.98E-03	0	9.9	60	16
xylene	3.67E-03	0	18.4	217	50
chlorobenzene	1.54E-03	0	7.7	0.326	0.1
dichloromethane	2.15E-03	0	10.8	24	7
trifluoroethane	1.89E-02	0	94.5	20	4
tricholorofluoromethane	1.41E-03	0	7.1	790	140
methane	6.39E-04	160	323.2	3800	5300
acetone	3.62E-03	0.2	18.5	52	22
2-butanone (Methyl Ethyl Keytone)	6.01E-03	0	30.1	30	10
4-methyl-2-pentanone	1.41E-03	0	7.1	143	35
cyclohexanone	6.62E-04	0	3.3	4.89	25 (TLV)
carbon monoxide	2.03E-03	23	56.2	11	10
ammonia	8.46E-05	321	642.4	7	10
Carbon Dioxide	0.00E+00	1000000	2000000	12600	7000
Based on two persor	TLV = Threshold Limit Value				

Four Major Subassemblies

- Driven by NASA Std 3000-5.1.3.1-1
 - Carbon Dioxide Removal System (CDRS)
 - Temperature and Humidity Control (THC)
 - Nitrogen and Oxygen Control (NOC)
 - Driven by SMAC
 - Trace Contaminate Removal System (TCRS)

EVITATE ECS Airflow Inlet/Circulation

EVITATE ECS Airflow Inlet/Circulation

EVITATE ECS Airflow Inlet/Circulation

Stops 99.999999% of particulates (regolith) 0.3 μm or larger
Easy to replace

Temperature and Humidity Control

Regenerative Zeolite 5A Media

- Small beads (Ø ~4 mm)
- Specifically targets CO₂
- Removes ~2 kg CO₂ per day
- Regenerates at 135 °C
- Flight-proven

Zeolite 5A Media

EVITATE Zeolite Media Bed Cross Section

Trace Contaminate Removal System (TCRS)

Trace Contaminate Removal System (TCRS)

Charcoal media

- Removes high molecular weight components
 - Toluene, dichloromethane, ammonia, etc...

TCRS High Temperature Catalytic

- Removes low molecular weight components
 - Methane, carbon monoxide, etc...

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 891 \text{ KJ/mol}$ (Methane Combustion) Design based on Perry, et al., 1999

Nitrogen and Oxygen Control (NOC)

Gaseous Oxygen To Cabin Gaseous Nitrogen

- Stored as liquid
- Refilled for each mission
- Replaces oxygen generation system

Cryogenic LOX tank

Flight-Proven Technologies

Routing components - MDC-Vacuum Electronics 4" - OMEGA Engineering 3' 6″ Compression Fittings - Swagelok

• Al 7075-T6: Lightweight, strong, machinable

- Mass: 24,871 kg
- Height: 8.15 m
- Fuel: LOX/LH2
- Technology Readiness Level (TRL) summary:

- Feasibility proven, next step to integrate with lunar architecture and refine existing design
- Primary goals for the next iteration:
 - Guidance, Navigation and Control (GNC)
 - Communications
 - Power Supply
 - Fuel Distribution
 - Vehicle Interior Systems

Design Goals	Proven With:
Access entire lunar surface	Orbital calculations, vehicle mass

- NASA-Air Force COst Model 2007
 - Vehicle specifics wherever possible
 - Shuttle, ISS, Apollo analogues for unspecified

- DDT&E \$3.1 billion
- Unit Cost \$280 million

No benefit from similar systems development

COMMUNITY Education

- Cross Plains Elementary
 - ~100 Elementary students and parents

- Madison East High School
 - ~100 Advanced Math Students
- University presentations

• Website

- uw-levitate.blogspot.com
- Twitter
 - @uw_levitate

Semester's done, see http://uwlevitate.blogspot.com/ for our presentation and final report.

11:02 PM May 10th via web

Senior Design's Complete

FOLLOW US

MONDAY, MAY 10, 2010 Posted by Team LEVITATE at 10:31 PM 0 comments

It's been a crazy-busy semester, but we completed the primary design for LEVITATE last Monday (5/4). We presented the design to the UW community this past Wednesday; see the 46 minute mark in the presentation video. See also our final report (and bear in mind that the group collectively had 6 hours of sleep in the three preceding days...).

Next up we're heading to Madison East High School to participate in their annual Math Week event. We hope to show the students how useful and pervasive math is in engineering and cool projects.

After the outreach event we'll be heading to the RASC-AL competition in Cocoa Beach, FL, June 7-9. For this competition we'll be polishing some of the rough edges, especially the power, communications, and living elements. Before the competition we'll also project our design into a possible lunar exploration scenario to evaluate the vehicles operation. Gwilter

TEAM LEVITATE is: Adam Koch Ben Conrad Kevin Hart Tim Feyereisen Tyler Tallman

We are a team of undergradutes at the University of Wisconsin designing a Lunar transportation vehicle for our capstone course, EMA 569. Our design, LEVITATE, is also competing in the RASC-AL 2010 design competition.

- University of Wisconsin
 - Dr. Frederick Elder
 - Prof. Noah Hershkowitz
 - Prof. Michael Corradini
 - Industry
 - Eric Benson, ERG Aerospace
 - Steve McQueen, ALCAN Rolled Products
 - Victor Giuliano, Pratt & Whitney Rocketdyne

Questions?

- Same interface as spacesuit
- Spacesuited astronaut seats, locks module
- Astronaut enters vehicle through other suitport
- Empties cargo

Subsystem	Component	Mas	Mass (kg)		
	Leg Assemblies	1875			
	Top Deck	290	2741		
Structure	Engine Box	76			
Structure	RCS Assemblies	230	2741		
	Tank Caps	210			
	Misc Fasteners	60			
Propulsion	CECE Engine	150	1040		
Hardware	Fuel Tanks	1090	1240		
Fuel	LOX	16923	20000		
	LH2	3077	20000		
Life Support	Life Support System	270	270		
	Wall Panels	236	620		
Habitat	Roof Panels	130			
	Suitports	234			
	MLI	20			
	Total	24871			

TCRS Activated Charcoal Media Quantities

Media	Removes	Est. Yearly Load (kg)	With Factor Of Safety, 1.5 (kg)	Media Capacity (kg VOC / kg media)	Required Media Mass (kg)	Media Bulk Density (kg/m^3))	Required Media Volume (m^3)
Puracarb							
AM	Ammonia	0.23448	0.35173	0.058	6.064	720	0.0084
Purafil							
SP Blend	VOCs	0.10971	0.16456	0.1	1.646	640	0.0026

TCRS Residence Times in Activated Charcoal

Activated Charcoal Bed Cross Section Sizing and Residence time (5.0 CFM Flow Rate)							
Media	Bed Radius (ft)	Cross Section (ft^2)	Required Volume of Media (ft^3)	Required Length (ft)	Air Velocity (ft/min)	Residence Time (min)	Residence Time (s)
Puracarb AM	0.250	0.196	0.297	1.513	25.47	0.06	3.56
Purafil SP	0.250	0.196	0.091	0.462	25.47	0.02	1.09

Nitrogen and Oxygen Control (NOC) CEVITATE Cabin Partial Pressures

Component	Required Partial Pressures (%)	Partial Pressure (psia)	Initial Atmospheric Requirements (L)	Metabolic Regeneration Required (L)	Total Gaseous Volume Required (L)	Total Required (mol)	Total mass Required (kg)	Liquid Density (kg/L)	Liquid Volume Required (L)
Oxygen (O2)	0.203	3.0	11165	16380	27545	1229.7	39.4	1.141	34.5
Nitrogen (N2)	0.785	11.5	43175	0	43175	1927.5	54.0	0.807	66.9
			Gaseous					Li	quid

Life Support Power Requirements

System	Operational Power (W)	Stand-by Power (W)
CDRA	368	162
TCRS	461	154
THC	551	451
NOC ⁽¹⁾	50	50
WWCP ⁽¹⁾	654	380
TOTAL	2084	1197