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TTTTTTTTTTTTT Heat dissipation requirements

AAAAAA

e Remove heat fluxes of 100-1000 W/cm?
* Applicable to laser diodes, computer processors, etc.

Laser Diode Array
(Silk et al, 2008)



rrrrrrrrrrrrr Heat dissipation requirements

AAAAAA

* Current Solutions
— Flow boiling
— Microchannel boiling
— Jet impingement
— Spray cooling

Spray cooling is the most promising because it achieves
high heat transfer coefficients at low flow rates.



w Limited previous

TTTTTTTTTTTTT

WISCONSIN microgravity research

AAAAAA

 Sone et al. (1996): single spray perpendicular to heated surface

(100 mm away)
—s 14% variation in the critical heat flux from O to 1.8 Gs

* Yoshida, et al. (2001): single spray perpendicular to heated surface
(100 mm away)
— Microgravity significantly effects critical heat flux

* Golliher, et al. (2005): single spray angled 55° in 2.2 sec. drop tower
—s Significant pooling on the heated surface due largely

to surface tension

* Yerkes et al. (2004): single spray in micro- and enhanced-gravity.
— Noted a decrease in Nusselt number with

acceleration



TTTTTTTTTTTTT Spray cooling — linear array

AAAAAA

* Single-spray systems do not cover a large area (> 1 cm?)

 Regner and Shedd investigated a linear array of sprays
directed 45° onto a heated surface
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(Shedd, 2007)

* Directs fluid flow towards a defined exit to avoid fluid
management issues



Experiment basis
AAAAAA & hypothesis

Linear spray research showed performance
independent of orientation
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TTTTTTTTTTTTT

Experiment basis

AAAAAA

WISCONSIN & hypothesis

Predict that with similar spray array, spray cooling
will function independent of gravity



TTTTTTTTTTTTT Experiment design

AAAAAA

Goal: determine variation of heat transfer
coefficient h with gravity

q”’: heat flux measured from heater power
T.: Temperature of heated surface
T..: Temperature of spray



Closed-loop system
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@ Heater design

AAAAAA

* Ohmite TGHG 1 Q precision current sense resistor
* Four T-type thermocouples embedded in heater
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s Spray array design
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Made from microbore tubing:
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Wi oPray array & spray box

AAAAAA

Fluid inlet & outlet

Top half:
spray array

Bottom half:

heater Z-direction
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TTTTTTTTTTTT Microgravity environment

AAAAAA

* 30 microgravity (nominally O g) parabolas lasting 20-
25s each

1.8 gis experienced between microgravity
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AAAAAA
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TTTTTTTTTTTTT Procedure: Flow rate Q & heat flux g”

AAAAAA

Q (L/min): g” (W/cm?):

0.67 24.9
2.67 25.8
3.81 26.6

Very conservative heat fluxes used due to
experimental nature
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Epoxy seal failure
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Epoxy cracked due to fluid pressure in pre-flight testing
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Epoxy seal failure
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TTTTTTTTTTTTT

AAAAAA

Visualization shows fluid
behavior

Camera
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Flight data: flow rate dominates
WISCONSIN performance

Heat Transfer Coeff. vs Z Acceleration
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Ah is consistent with Ag
for each flow rate

* hincreases with microgravity

* Decreases with enhanced gravity
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TTTTTTTTTTTTT Possible Relationships

AAAAAA

hvs. jerk -

Q
S 0.6
=

~ 0.5

Acceleration (G)

Increasing variabi

ity with flow rate:

0.7

Flow rate: 0.67 L/min

2.67 L/min 3.81 L/min
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vvvvvvvvvvvvv Shedd model for +/-1g

AAAAAA

Shedd (2007) found a correlation of the form:

h = Cpc,Q"*Pr—

where the heat transfer coefficient, h, is a function of

* the average spray droplet flux, Q”, and constants:

e the fluid’s density, p,

» specific heat, o

* Prandtl number, Pr,

e an arbitrary constant, C in [m~s~], for a linear spray array,
* and a constant power, a.



aaaaaaaaaaaaa Microgravity results fit trend

AAAAAA

* Q" is believed to be 10-20% high due to the
broken epoxy on the spray array

Comparision of h and Q" for Regner-Shedd and Variable Gravity data
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TTTTTTTTTTTTT Future steps

AAAAAA

Fluid Inlet  Nozzle edge

type
4—/_

e Effect of spray characteristics

Nozzle

— Spray hole diameter and length  diameter

~

<
«

Nozzle

length

— Hole entrance and exit design //\\

 Enhanced surfaces with linear spray cooling?

Cubic Pin Fins Pyramids Straight Fins
(Kim, J. 2007)
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TTTTTTTTTTTTT Conclusion

AAAAAA

* Flow rate Q largely determines h
— 2.61 % standard deviation of h

* Support for a simple relation between h and Q

— Ability to predict microgravity performance with a
1g test

* Unforeseen correspondence with jerk and Q

* Further microgravity studies are needed
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